A Steffensen Type Inequality
نویسندگان
چکیده
Steffensen’s inequality deals with the comparison between integrals over a whole interval [a, b] and integrals over a subset of [a, b]. In this paper we prove an inequality which is similar to Steffensen’s inequality. The most general form of this inequality deals with integrals over a measure space. We also consider the discrete case.
منابع مشابه
On the Jensen-Steffensen inequality for generalized convex functions
Jensen–Steffensen type inequalities for P -convex functions and functions with nondecreasing increments are presented. The obtained results are used to prove a generalization of Čebyšev’s inequality and several variants of Hölder’s inequality with weights satisfying the conditions as in the Jensen–Steffensen inequality. A few well-known inequalities for quasi-arithmetic means are generalized.
متن کاملA Weighted Hermite Hadamard Inequality for Steffensen–Popoviciu and Hermite–Hadamard Weights on Time Scales
In this paper, we present a weighted version of the Hermite–Hadamard inequality for convex functions on time scales, with weights that are allowed to take some negative values, these are the Steffensen–Popoviciu and the Hermite–Hadamard weights. We also present some applications of this inequality.
متن کاملBounds for the Normalized Jensen – Mercer Functional
We introduce the normalized Jensen-Mercer functional Mn( f ,x, p) = f (a)+ f (b)− n ∑ i=1 pi f (xi)− f ( a+b− n ∑ i=1 pixi ) and establish the inequalities of type MMn( f ,x,q) Mn( f ,x, p) mMn( f ,x,q) , where f is a convex function, x = (x1, . . . ,xn) and m and M are real numbers satisfying certain conditions. We prove them for the case when p and q are nonnegative n -tuples and when p and q...
متن کاملSteffensen method for solving nonlinear matrix equation $X+A^T X^{(-1)}A=Q$
In this article we study Steffensen method to solve nonlinear matrix equation $X+A^T X^{(-1)}A=Q$, when $A$ is a normal matrix. We establish some conditions that generate a sequence of positive denite matrices which converges to solution of this equation.
متن کامل